Type: \(\displaystyle A^{1}_2+2A^{1}_1\) (Dynkin type computed to be: \(\displaystyle A^{1}_2+2A^{1}_1\))
Simple basis: 4 vectors: (1, 2, 2, 2, 2, 2, 2, 2), (0, -1, 0, 0, 0, 0, 0, 0), (0, 0, 0, 1, 2, 2, 2, 2), (0, 0, 0, 1, 0, 0, 0, 0)
Simple basis epsilon form:
Simple basis epsilon form with respect to k:
Number of outer autos with trivial action on orthogonal complement and extending to autos of ambient algebra: 0
Number of outer autos with trivial action on orthogonal complement: 0.
C(k_{ss})_{ss}: B^{1}_3
simple basis centralizer: 3 vectors: (0, 0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 1, 0, 0), (0, 0, 0, 0, 0, 0, 0, 1)
Number of k-submodules of g: 50
Module decomposition, fundamental coords over k: \(\displaystyle V_{\omega_{2}+\omega_{3}+\omega_{4}}+V_{\omega_{1}+\omega_{3}+\omega_{4}}+V_{2\omega_{4}}+7V_{\omega_{3}+\omega_{4}}+V_{2\omega_{3}}+V_{\omega_{1}+\omega_{2}}+8V_{\omega_{2}}+8V_{\omega_{1}}+22V_{0}\)
g/k k-submodules
idsizeb\cap k-lowest weightb\cap k-highest weightModule basisWeights epsilon coords
Module 11(0, 0, 0, 0, 0, -1, -2, -2)(0, 0, 0, 0, 0, -1, -2, -2)g_{-34}-\varepsilon_{6}-\varepsilon_{7}
Module 21(0, 0, 0, 0, 0, -1, -1, -2)(0, 0, 0, 0, 0, -1, -1, -2)g_{-28}-\varepsilon_{6}-\varepsilon_{8}
Module 31(0, 0, 0, 0, 0, 0, -1, -2)(0, 0, 0, 0, 0, 0, -1, -2)g_{-22}-\varepsilon_{7}-\varepsilon_{8}
Module 41(0, 0, 0, 0, 0, -1, -1, -1)(0, 0, 0, 0, 0, -1, -1, -1)g_{-21}-\varepsilon_{6}
Module 51(0, 0, 0, 0, 0, 0, -1, -1)(0, 0, 0, 0, 0, 0, -1, -1)g_{-15}-\varepsilon_{7}
Module 61(0, 0, 0, 0, 0, -1, -1, 0)(0, 0, 0, 0, 0, -1, -1, 0)g_{-14}-\varepsilon_{6}+\varepsilon_{8}
Module 71(0, 0, 0, 0, 0, 0, 0, -1)(0, 0, 0, 0, 0, 0, 0, -1)g_{-8}-\varepsilon_{8}
Module 81(0, 0, 0, 0, 0, 0, -1, 0)(0, 0, 0, 0, 0, 0, -1, 0)g_{-7}-\varepsilon_{7}+\varepsilon_{8}
Module 91(0, 0, 0, 0, 0, -1, 0, 0)(0, 0, 0, 0, 0, -1, 0, 0)g_{-6}-\varepsilon_{6}+\varepsilon_{7}
Module 103(0, -1, -2, -2, -2, -2, -2, -2)(1, 0, 0, 0, 0, 0, 0, 0)g_{1}
g_{9}
g_{-62}
\varepsilon_{1}-\varepsilon_{2}
\varepsilon_{1}-\varepsilon_{3}
-\varepsilon_{2}-\varepsilon_{3}
Module 113(0, 0, 0, -1, 0, 0, 0, 0)(0, 0, 0, 1, 0, 0, 0, 0)g_{4}
h_{4}
g_{-4}
\varepsilon_{4}-\varepsilon_{5}
0
-\varepsilon_{4}+\varepsilon_{5}
Module 121(0, 0, 0, 0, 0, 1, 0, 0)(0, 0, 0, 0, 0, 1, 0, 0)g_{6}\varepsilon_{6}-\varepsilon_{7}
Module 131(0, 0, 0, 0, 0, 0, 1, 0)(0, 0, 0, 0, 0, 0, 1, 0)g_{7}\varepsilon_{7}-\varepsilon_{8}
Module 141(0, 0, 0, 0, 0, 0, 0, 1)(0, 0, 0, 0, 0, 0, 0, 1)g_{8}\varepsilon_{8}
Module 154(0, 0, 0, -1, -1, -2, -2, -2)(0, 0, 0, 1, 1, 0, 0, 0)g_{12}
g_{-44}
g_{5}
g_{-48}
\varepsilon_{4}-\varepsilon_{6}
-\varepsilon_{5}-\varepsilon_{6}
\varepsilon_{5}-\varepsilon_{6}
-\varepsilon_{4}-\varepsilon_{6}
Module 161(0, 0, 0, 0, 0, 1, 1, 0)(0, 0, 0, 0, 0, 1, 1, 0)g_{14}\varepsilon_{6}-\varepsilon_{8}
Module 171(0, 0, 0, 0, 0, 0, 1, 1)(0, 0, 0, 0, 0, 0, 1, 1)g_{15}\varepsilon_{7}
Module 183(-1, -1, -1, -1, -1, -2, -2, -2)(0, 0, 1, 1, 1, 0, 0, 0)g_{18}
g_{24}
g_{-56}
\varepsilon_{3}-\varepsilon_{6}
\varepsilon_{2}-\varepsilon_{6}
-\varepsilon_{1}-\varepsilon_{6}
Module 194(0, 0, 0, -1, -1, -1, -2, -2)(0, 0, 0, 1, 1, 1, 0, 0)g_{19}
g_{-39}
g_{13}
g_{-43}
\varepsilon_{4}-\varepsilon_{7}
-\varepsilon_{5}-\varepsilon_{7}
\varepsilon_{5}-\varepsilon_{7}
-\varepsilon_{4}-\varepsilon_{7}
Module 201(0, 0, 0, 0, 0, 1, 1, 1)(0, 0, 0, 0, 0, 1, 1, 1)g_{21}\varepsilon_{6}
Module 211(0, 0, 0, 0, 0, 0, 1, 2)(0, 0, 0, 0, 0, 0, 1, 2)g_{22}\varepsilon_{7}+\varepsilon_{8}
Module 223(-1, -1, -1, -1, -1, -1, -2, -2)(0, 0, 1, 1, 1, 1, 0, 0)g_{25}
g_{30}
g_{-53}
\varepsilon_{3}-\varepsilon_{7}
\varepsilon_{2}-\varepsilon_{7}
-\varepsilon_{1}-\varepsilon_{7}
Module 234(0, 0, 0, -1, -1, -1, -1, -2)(0, 0, 0, 1, 1, 1, 1, 0)g_{26}
g_{-33}
g_{20}
g_{-38}
\varepsilon_{4}-\varepsilon_{8}
-\varepsilon_{5}-\varepsilon_{8}
\varepsilon_{5}-\varepsilon_{8}
-\varepsilon_{4}-\varepsilon_{8}
Module 241(0, 0, 0, 0, 0, 1, 1, 2)(0, 0, 0, 0, 0, 1, 1, 2)g_{28}\varepsilon_{6}+\varepsilon_{8}
Module 253(0, 0, -1, -1, -1, -2, -2, -2)(1, 1, 1, 1, 1, 0, 0, 0)g_{29}
g_{-54}
g_{-51}
\varepsilon_{1}-\varepsilon_{6}
-\varepsilon_{2}-\varepsilon_{6}
-\varepsilon_{3}-\varepsilon_{6}
Module 263(-1, -1, -1, -1, -1, -1, -1, -2)(0, 0, 1, 1, 1, 1, 1, 0)g_{31}
g_{36}
g_{-49}
\varepsilon_{3}-\varepsilon_{8}
\varepsilon_{2}-\varepsilon_{8}
-\varepsilon_{1}-\varepsilon_{8}
Module 274(0, 0, 0, -1, -1, -1, -1, -1)(0, 0, 0, 1, 1, 1, 1, 1)g_{32}
g_{-27}
g_{27}
g_{-32}
\varepsilon_{4}
-\varepsilon_{5}
\varepsilon_{5}
-\varepsilon_{4}
Module 281(0, 0, 0, 0, 0, 1, 2, 2)(0, 0, 0, 0, 0, 1, 2, 2)g_{34}\varepsilon_{6}+\varepsilon_{7}
Module 293(0, 0, -1, -1, -1, -1, -2, -2)(1, 1, 1, 1, 1, 1, 0, 0)g_{35}
g_{-50}
g_{-47}
\varepsilon_{1}-\varepsilon_{7}
-\varepsilon_{2}-\varepsilon_{7}
-\varepsilon_{3}-\varepsilon_{7}
Module 303(-1, -1, -1, -1, -1, -1, -1, -1)(0, 0, 1, 1, 1, 1, 1, 1)g_{37}
g_{41}
g_{-45}
\varepsilon_{3}
\varepsilon_{2}
-\varepsilon_{1}
Module 314(0, 0, 0, -1, -1, -1, -1, 0)(0, 0, 0, 1, 1, 1, 1, 2)g_{38}
g_{-20}
g_{33}
g_{-26}
\varepsilon_{4}+\varepsilon_{8}
-\varepsilon_{5}+\varepsilon_{8}
\varepsilon_{5}+\varepsilon_{8}
-\varepsilon_{4}+\varepsilon_{8}
Module 323(0, 0, -1, -1, -1, -1, -1, -2)(1, 1, 1, 1, 1, 1, 1, 0)g_{40}
g_{-46}
g_{-42}
\varepsilon_{1}-\varepsilon_{8}
-\varepsilon_{2}-\varepsilon_{8}
-\varepsilon_{3}-\varepsilon_{8}
Module 333(-1, -1, -1, -1, -1, -1, -1, 0)(0, 0, 1, 1, 1, 1, 1, 2)g_{42}
g_{46}
g_{-40}
\varepsilon_{3}+\varepsilon_{8}
\varepsilon_{2}+\varepsilon_{8}
-\varepsilon_{1}+\varepsilon_{8}
Module 344(0, 0, 0, -1, -1, -1, 0, 0)(0, 0, 0, 1, 1, 1, 2, 2)g_{43}
g_{-13}
g_{39}
g_{-19}
\varepsilon_{4}+\varepsilon_{7}
-\varepsilon_{5}+\varepsilon_{7}
\varepsilon_{5}+\varepsilon_{7}
-\varepsilon_{4}+\varepsilon_{7}
Module 353(0, 0, -1, -1, -1, -1, -1, -1)(1, 1, 1, 1, 1, 1, 1, 1)g_{45}
g_{-41}
g_{-37}
\varepsilon_{1}
-\varepsilon_{2}
-\varepsilon_{3}
Module 363(-1, -1, -1, -1, -1, -1, 0, 0)(0, 0, 1, 1, 1, 1, 2, 2)g_{47}
g_{50}
g_{-35}
\varepsilon_{3}+\varepsilon_{7}
\varepsilon_{2}+\varepsilon_{7}
-\varepsilon_{1}+\varepsilon_{7}
Module 374(0, 0, 0, -1, -1, 0, 0, 0)(0, 0, 0, 1, 1, 2, 2, 2)g_{48}
g_{-5}
g_{44}
g_{-12}
\varepsilon_{4}+\varepsilon_{6}
-\varepsilon_{5}+\varepsilon_{6}
\varepsilon_{5}+\varepsilon_{6}
-\varepsilon_{4}+\varepsilon_{6}
Module 383(0, 0, -1, -1, -1, -1, -1, 0)(1, 1, 1, 1, 1, 1, 1, 2)g_{49}
g_{-36}
g_{-31}
\varepsilon_{1}+\varepsilon_{8}
-\varepsilon_{2}+\varepsilon_{8}
-\varepsilon_{3}+\varepsilon_{8}
Module 393(-1, -1, -1, -1, -1, 0, 0, 0)(0, 0, 1, 1, 1, 2, 2, 2)g_{51}
g_{54}
g_{-29}
\varepsilon_{3}+\varepsilon_{6}
\varepsilon_{2}+\varepsilon_{6}
-\varepsilon_{1}+\varepsilon_{6}
Module 403(0, 0, 0, -1, -2, -2, -2, -2)(0, 0, 0, 1, 2, 2, 2, 2)g_{52}
2h_{8}+2h_{7}+2h_{6}+2h_{5}+h_{4}
g_{-52}
\varepsilon_{4}+\varepsilon_{5}
0
-\varepsilon_{4}-\varepsilon_{5}
Module 413(0, 0, -1, -1, -1, -1, 0, 0)(1, 1, 1, 1, 1, 1, 2, 2)g_{53}
g_{-30}
g_{-25}
\varepsilon_{1}+\varepsilon_{7}
-\varepsilon_{2}+\varepsilon_{7}
-\varepsilon_{3}+\varepsilon_{7}
Module 423(0, 0, -1, -1, -1, 0, 0, 0)(1, 1, 1, 1, 1, 2, 2, 2)g_{56}
g_{-24}
g_{-18}
\varepsilon_{1}+\varepsilon_{6}
-\varepsilon_{2}+\varepsilon_{6}
-\varepsilon_{3}+\varepsilon_{6}
Module 4312(-1, -1, -1, -2, -2, -2, -2, -2)(0, 0, 1, 2, 2, 2, 2, 2)g_{58}
g_{60}
g_{11}
g_{55}
g_{-16}
g_{17}
g_{57}
g_{3}
g_{-59}
g_{-23}
g_{10}
g_{-61}
\varepsilon_{3}+\varepsilon_{4}
\varepsilon_{2}+\varepsilon_{4}
\varepsilon_{3}-\varepsilon_{5}
\varepsilon_{3}+\varepsilon_{5}
-\varepsilon_{1}+\varepsilon_{4}
\varepsilon_{2}-\varepsilon_{5}
\varepsilon_{2}+\varepsilon_{5}
\varepsilon_{3}-\varepsilon_{4}
-\varepsilon_{1}-\varepsilon_{5}
-\varepsilon_{1}+\varepsilon_{5}
\varepsilon_{2}-\varepsilon_{4}
-\varepsilon_{1}-\varepsilon_{4}
Module 4412(0, 0, -1, -2, -2, -2, -2, -2)(1, 1, 1, 2, 2, 2, 2, 2)g_{61}
g_{-10}
g_{23}
g_{59}
g_{-3}
g_{-57}
g_{-17}
g_{16}
g_{-55}
g_{-11}
g_{-60}
g_{-58}
\varepsilon_{1}+\varepsilon_{4}
-\varepsilon_{2}+\varepsilon_{4}
\varepsilon_{1}-\varepsilon_{5}
\varepsilon_{1}+\varepsilon_{5}
-\varepsilon_{3}+\varepsilon_{4}
-\varepsilon_{2}-\varepsilon_{5}
-\varepsilon_{2}+\varepsilon_{5}
\varepsilon_{1}-\varepsilon_{4}
-\varepsilon_{3}-\varepsilon_{5}
-\varepsilon_{3}+\varepsilon_{5}
-\varepsilon_{2}-\varepsilon_{4}
-\varepsilon_{3}-\varepsilon_{4}
Module 453(-1, 0, 0, 0, 0, 0, 0, 0)(0, 1, 2, 2, 2, 2, 2, 2)g_{62}
g_{-9}
g_{-1}
\varepsilon_{2}+\varepsilon_{3}
-\varepsilon_{1}+\varepsilon_{3}
-\varepsilon_{1}+\varepsilon_{2}
Module 468(-1, -1, -2, -2, -2, -2, -2, -2)(1, 1, 2, 2, 2, 2, 2, 2)g_{63}
g_{-2}
g_{64}
-h_{2}
2h_{8}+2h_{7}+2h_{6}+2h_{5}+2h_{4}+2h_{3}+2h_{2}+h_{1}
g_{-64}
g_{2}
g_{-63}
\varepsilon_{1}+\varepsilon_{3}
-\varepsilon_{2}+\varepsilon_{3}
\varepsilon_{1}+\varepsilon_{2}
0
0
-\varepsilon_{1}-\varepsilon_{2}
\varepsilon_{2}-\varepsilon_{3}
-\varepsilon_{1}-\varepsilon_{3}
Module 471(0, 0, 0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0, 0)h_{5}+h_{4}+h_{3}-h_{1}0
Module 481(0, 0, 0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0, 0)h_{6}0
Module 491(0, 0, 0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0, 0)h_{7}0
Module 501(0, 0, 0, 0, 0, 0, 0, 0)(0, 0, 0, 0, 0, 0, 0, 0)h_{8}0

Information about the subalgebra generation algorithm.
Heirs rejected due to having symmetric Cartan type outside of list dictated by parabolic heirs: 34
Heirs rejected due to not being maximally dominant: 11
Heirs rejected due to not being maximal with respect to small Dynkin diagram automorphism that extends to ambient automorphism: 11
Heirs rejected due to having ambient Lie algebra decomposition iso to an already found subalgebra: 0
Parabolically induced by A^{1}_2+A^{1}_1
Potential Dynkin type extensions: A^{1}_2+3A^{1}_1,